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1 Introduction

Surgical resection of a brain tumor is a precise and delicate procedure. It re-
quires to remove the entire tumor, in order to prevent recurrence, while preserv-
ing as much as possible of surrounding healthy or eloquent tissues, to reduce
the probability of functional disorders. However, tumors borders, especially
when located deep into the parenchyma, are usually not clearly visible among
healthy tissues. In addition, important displacements and deformations may
occur between pre-operative images used for diagnosis and intra-operative con-
figurations, which raises significant difficulties for the treatment.

The brain-shift corresponds to an intra-operative deformation of soft tissues,
affecting the localization of internal structures of the brain. Multiple factors can
impact the amplitude and direction of this non-linear deformation: the loss of
cerebrospinal fluid (CSF), the positioning of the patient during surgery, the size
of the craniectomy, the opening of the dura and the actions of the surgeon such
as retraction or tissue resection [1]. Several studies [2, 3, 4, 5] have reported
cortical surface and subcortical displacements larger than 20 mm and 7 mm,
respectively, that must be taken into account given the fact that the desired
accuracy of tumor resection is generally below 2 mm.

While neuronavigation has become standard in neurosurgery, intraopera-
tive imaging has proven to be useful in many situations [6] and should be of
growing importance in future years. Among intraoperative imaging modalities,
Ultrasound (US) is a common because it can easily be integrated in the clini-
cal workflow, and is widely available in medical centers. However, US images
are of limited quality, entailing significant difficulties to identify deep internal
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structures. Contrary to ultrasound, intra-operative Magnetic Resonance Imag-
ing (iMRI) is a mean of obtaining detailed images of patient’s brain during the
surgery. However, such installation is expensive and the acquisition of MRI im-
ages during surgery is a complex process that significantly increases the duration
of the procedure.

To fill the gap between comprehensive pre-operative data and sparse, in-
complete or low-quality intra-operative images, the general trend is to develop
non-rigid registration method. This enables to visualize inner structures, sur-
gical targets or planning at key moments of the surgery where assistance is
needed. Many image-to-image registration algorithms were proposed in the lit-
erature [1, 7]. In this paper, we will only focus on biomechanical model-based
solutions. One of their main advantages is the ease to define the mechanical
actions at the origin of tissue deformation as well as the boundary conditions
and contacts between structures. In addition, it has proven to be consistent and
robust when dealing with (very) sparse intra-operative data.

This article is organized as follows. In section 2 we will introduce the main
steps and criteria of model-based registration approaches. Section 3 is dedicated
to the presentation of our method [8], which relies on Finite Element modeling
and vessels-based constraints from intra-operative US. We then provide detailed
discussion and comparison regarding the criteria introduced previously as well
as the constraints in the operating theater.

2 Key steps for computational modeling in the
operating theater

This section summarizes key steps and modeling choices that could or should be
taken into account before and during surgery. In the following section we will
position our retrospective study [8] with respect to these criteria, and highlight
the necessary steps that are still missing for intra-operative usage of the method.

Before surgery During surgery

• Construct model geometry
• Define constitutive law
• Set mechanical properties
• Define boundary conditions
• Perform pre-computations

• Acquire intra-operative images
• Evaluate additional boundary condi-

tions and loads
• Use efficient computational method
• Model tissue-resection
• Render the information

Table 1: Key steps for computational modeling in the operating theater. Terms
in regular font are common to the majority of the models, while ones in italic
could be considered for improvement.
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2.1 Before surgery: generation of a patient-specific model

For applications in the operating theater, any generic model of the brain is of
little value and a patient-specific model must be built. This specificity first
concerns the morphology of the parenchyma, the bulk of the model, and in-
ner structures such as the dura mater, ventricles or tumor, if any. While the
constitutive law of brain tissue is usually generic, estimating the patient’s own
rheological parameters could be a valuable addition, depending on the type of
loads applied to the model. Finally, some boundary conditions, e.g. related to
fixed or contacts areas, can already be formulated.

2.1.1 Geometry

The generation of a patient model commonly rely on pre-operative Magnetic
Resonance Images (MRI) solely, with different sequences available (such as T1-
weighted with or without Gadolinium, T2 FLAIR, MR Angiography or Diffusion
Tensor Imaging). After a diagnostic scan, another MRI is commonly acquired a
day or a few hours before surgery, to provide up-to-date images to the neuron-
avigation system. Ideally, the model should be generated from this pre-surgery
exam. Therefore, to be compatible with the clinical workflow, it is mandatory
for the model generation process to be as automatic and robust as possible.
Although many approaches have been proposed in the literature, the automatic
generation of patient-specific models remains one of the major bottlenecks for
the widespread use of any computational model in the operating room.

A first step is usually the segmentation of the brain from MRI. A comprehen-
sive review of this widely studied topic is well beyond the scope of this chapter.
To limit their complexity, computational models in the operating room are gen-
erally relatively coarse and do not detail the cerebral convolutions and rarely
the gray and white matter layers. Therefore, automatic methods to segment
all the parenchyma, for example the Brain Extraction Tool (BET) proposed by
[9], could be well adapted. After segmentation, most of the existing works rely
on a 3D Finite Element mesh of the domain. While hexahedral elements are
preferred numerically, tetrahedrons are often used for meshing simplicity.

2.1.2 Constitutive law

Brain constitutive behavior and brain modeling have been extensively described
in the previous chapters of this book. The behavior of brain tissues is widely
admitted as non-linear, inhomogeneous and patient-specific. The range of mod-
eling strategies is, however, very large, with constitutive laws from linear to
hyperelastic or bi-phasic materials. For a use in the operating room, one of the
major constraints is computational efficiency. Therefore, a trade-off must be
found between a fine modeling and the practicability of the model. Any simula-
tion requiring more than a few minutes could obviously not be compatible with
clinic.
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2.1.3 Mechanical properties

To our knowledge, virtually all the existing models use generic mechanical prop-
erties reported in the literature from experimental measurements. With some
exception, brain tissue stiffness is usually considered in the 1-10 kPa range (in
equivalent Young’s modulus, for the non-linear materials), with a Poisson ra-
tio from 0.4 to 0.49 [10]. Tumor tissues are often modeled as stiffer, following
clinical recommendations but without clear supporting data.

Although these orders of magnitude of the mechanical parameters are ade-
quate, they cannot represent the variability among patients and their specificity
and inhomogeneity. Therefore, assessing patient-specific mechanical properties,
for example with MR Elastography [11], could be a valuable addition. While
this may not be crucial when using imposed displacements [12], patient-specific
values could improve the simulation accuracy when other types of loads are used
(especially forces).

2.1.4 Known boundary conditions

Some boundary conditions can be determined pre-operatively, typically at the
interface between the brain and dura mater. Depending on the procedure, inner
structures may also be considered as fixed during surgery, such as the brain stem
region, the tentorium cerebelli, ventricles or even the falx cerebri.

In most cases, the segmentation of these structures from MRI images is
manual or semi-automatic. However, some authors have proposed automatic
methods to fix the cerebellum [13] or simulate interactions with the cerebral
falx and tentorium cerebelli [14]. Once segmented, these structures are used to
fix nodes or to set up sliding contact boundary conditions.

2.1.5 Pre-computations

Whenever possible, pre-computations could be performed pre-operatively to
speed up the resolution during surgery. Pre-computations can be purely nu-
merical. When using a linear elastic model, a common approach is to compute
and store the deformations resulting from elementary nodal displacements [15].
Other strategies model the non linearity of the brain through pre-computations
[16, 17, 18]. The overall model response to a set of imposed nodal displace-
ments then relies on the principle of superposition, or linear combination of
pre-computed deformations. While pre-computations could last several hours,
the intra-operative inverse problem is generally straightforward. Finally, numer-
ical optimizations are also possible, for example by pre-inversing the stiffness
matrix to handle contacts with Lagrange Multipliers [8].
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2.2 In the operating theater

2.2.1 Intra-operative imaging

Numerous factors can change between the pre-operative planning and the surgery,
such as the patient positioning, location and size of the craniotomy, loss of cere-
brospinal fluid, anesthesia control or tissue retraction and resection. All these
factors directly affect how the brain tissues deform. Therefore, simulations rely-
ing only on a pre-operative model and planning cannot be considered to provide
reliable results. It is then mandatory to capture information, in the operating
room, about the current patient tissue configuration and the realized procedure,
to specify adequate loads and boundary conditions of the model. This new in-
formation is usually acquired at least once, typically after dural opening for
craniotomy-induced brain-shift compensation, or at the end of a resection pro-
cedure to ensure all tumor tissues were removed. Whenever possible, repeated
acquisitions could be used to track the deformations all along the procedure.

Many intra-operative imaging modalities have been used in neurosurgery [6],
such as MRI (iMRI), Ultrasound (iUS), optical systems such as stereo vision
CCD images or Laser Range Systems (LRS), and to a less extent intra-operative
X-Rays system like iCT or Cone Beam CT. A review of the advantages and
drawbacks of these imaging modalities can be found in [1].

2.2.2 Processing intra-operative images

Intra-operative imaging can be used to capture information about the patient
during surgery. The acquired images must then be processed to extract relevant
features that will be later transferred to the model as boundary conditions or
loads. Examples of structures to segment are points on the exposed cortical
surface, contours (e.g. the cortical or ventricles surface on iMRI), homologous
landmarks or 3D vessels. Ideally, segmenting the intra-operative images should
be fully automatic. However, semi-automatic methods are commonly used as
long as interactions remain very limited.

2.2.3 Intra-operative boundary conditions and loads

Many authors have used imposed displacements on FE nodes to match the
model with the structures segmented from intra-operative images. In this case,
the computational model could be mostly considered as a representation of the
warping function in a registration problem. The brain-shift phenomenon is not
simulated directly, instead the model is used to extrapolate the deformations of
the brain from a sparse set of data, on a mechanical basis.

As opposed to this approach, several authors have proposed to actually
model the influence of gravity, loss of CSF of tissue resection on the brain, to
simulate its deformation [13, 19]. In that context, the collected intra-operative
data are not derived as loads for a forward simulation, but are used to find the
parameters leading to the optimal solution of an inverse problem.
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2.2.4 Efficient computational methods

Computational efficiency is a crucial factor in the operating room. While the en-
tire process must be considered, including images acquisition and processing, the
computational model resolution itself can be one of the main limiting criterion.
Real-time or interactive simulation is generally not required in a neurosurgical
context, but overall computation time should be limited to a couple of minutes.
This additional duration could be especially acceptable if the surgery can be re-
sumed just after data acquisition, while the model is ran and the pre-operative
MRI images are updated.

2.2.5 Modeling tissue resection

Neurosurgery often requires the retraction and resection of brain tissue, for
instance to remove a tumor, entailing many additional issues. Topological mod-
ifications (such as re-meshing or elements suppression) must then be performed
on the model. These modifications invalidate any pre-computations, raising
additional concerns about the computation time. An iterative approach is for
example proposed in [20], involving several simulations and re-meshing steps
providing updated images in approximately 7 mn. However, from the best of
our knowledge, a functional, robust and validated solution has not yet been
proposed to address the problem of resection while meeting the constraints of
the operating room.

2.2.6 Rendering the information

Once the deformed configuration of the brain has been computed, this informa-
tion must be rendered to the surgeon in a clear and informative way. The most
straightforward solution is to use the deformation field derived from the brain
shift modeling to map the pre-operative MRI image to the patient’s brain during
surgery. To go further, several groups have proposed augmented reality visual-
ization, especially in the surgical microscope, to help fusing, understanding and
visualizing complex medical imaging data and anatomical structures [21].

2.3 Validation and clinical studies

Validating the fidelity of a computational model of the brain in itself, from a
mechanical point of view, is a difficult problem. In a surgical context, a more
relevant objective may be to evaluate the overall procedure, i.e. the outcomes of
the simulation with respect to actual data about the deformed tissues. Ideally,
validation images to measure a target registration error should be acquired after
resection, and should be different than the ones used to express the loads and
boundary conditions.

To our knowledge, a comprehensive study including independent input data,
acquired in real surgical conditions, and an independent post-resection iMRI,
acquired for validation only, is not yet available. However, several groups have
started acquiring such data, and results are expected soon. While the iMRI
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setup will influence the measured deformation, due to its length, removal of
tools, tissue debulking and dural closing, these images are expected to provide
a much better ground truth than any other modalities.

2.3.1 Practicability and integration in the surgical workflow

Few studies clearly evaluate the practicability of their method. Several factors
should be considered such as integration in the surgical workflow, especially to
acquire intra-operative images, manual interactions, overall computation times
and information rendering. In [8], our method required less than 2 min to
process the iUS images, simulate the brain deformations with a constraint-based
iterative method, then update the pre-operative MRI (only the iUS acquisition
time is not included, usually 2 to 3 additional minutes). This method was
evaluated in a retrospective study only, but we showed that both the hardware
and the software could be compatible with the constraints of the operating room.

To our knowledge, almost all existing studies, including our own, are ret-
rospective only. A notable exception is [22], in which simulations were carried
out in the operating room, using the method proposed in [19], before updated
MRI was displayed in the neuronavigation system. This study could then be
considered as one of the first computational models of the brain actually used
in the operating theater.

3 Example of clinical application: constraint-
based simulation during tumor resection

This section introduces our approach to compensate for the brain-shift induced
by the dura mater opening [8]. The method combines a biomechanical model
build from pre-operative images and image-based constraints extracted from
intra-operative US.

Before surgery, a patient-specific Finite Element (FE) model of the brain
is constructed from pre-operative MRI images. This model accounts for the
soft tissues morphology, but also vessels located around the tumor. During
surgery, after opening the skull and dura mater, localized Doppler and B-mode
ultrasound images were acquired directly in contact with the brain. The vascular
tree and the footprint of the ultrasound probe are then extracted from these
intra-operative images.

A biomechanical simulation is then performed to compensate for the brain-
shift deformation. We introduce several types of constraints allowing to i) model
contacts between the brain and the dura, ii) register the pre- and intra-operative
vessels and iii) constrain the cortical surface under the footprint of the probe.
Finally, the pre-operative MRI is updated using the displacement field calculated
from the biomechanical model An overview of this method is shown in Figure
1.
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Figure 1: Overview of the method (source: [8]).

3.1 Before surgery: model generation

As presented in Section 2.1, the model must be built from pre-operative MRI
images acquired a few hours before surgery. This procedure must then be as
automatic as possible to be compatible with a clinical workflow.

3.1.1 Geometries from MRI images

Several atlas-based automatic algorithms such as [23, 24, 25] have provided
detailed solutions, with regard to the resolution of the meshes, but their imple-
mentation is difficult. In our research context, we have chosen a semi-automatic
coarse segmentation method.

Soft tissues are segmented from pre-operative T2-FLAIR (Fluid Attenu-
ated Inversion Recovery) MRI. This sequence reduces the signal from the cere-
brospinal fluid, thus highlighting brain lesions. The complete organ is first
extracted using the BET (Brain Extraction Tool) algorithm proposed by [9]. It
is fully automatic and runs in just a few seconds. The tumor is then segmented,
after manually initializing some seeds, via a growing region algorithm imple-
mented in the ITK-SNAP software [26]. For a more comprehensive study using
our model in clinic, more advanced segmentation methods, potentially publicly
available, should obviously be investigated.

Soft tissues are meshed homogeneously with linear tetrahedral elements,
using the CGAL library [27], leading to a coarse mesh of 2000 nodes for a single
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hemisphere. Its surface is extracted to form the collision mesh that will be used
to impose constraints with the skull and the probe footprint. This collision
mesh is decimated (i.e. about 300 vertices) in order to reduce the number of
constraints.

3.1.2 Segmentation of the vascular tree

The cerebrovascular tree is segmented from pre-operative Angiographic MRI
(ARM). While this modality provides poor contrasts for soft tissues, vessels
appear with very high intensities.

A review of vessels segmentation methods from medical images can be found
in [28]. In our work, we reconstructed the cerebrovascular tree using the Max-
imal Intensity Projection (MIP) technique proposed by [29]. The histogram
of this image reveals two peaks corresponding to the background of the image
(black) and the soft tissues of the brain (dark gray), respectively. The vessels
are then segmented using a threshold value chosen just after the second peak of
the histogram. This is illustrated in Figure 2a.

(a) Histogram of the MIP image (b) Segmentation (c) Skeletization

Figure 2: Histogram of the MIP image, segmentation and mesh generation of
the vessel tree.

The shape of this segmentation, and more particularly its outer envelope, is
very sensitive to the image quality and segmentation parameters. For example,
vessels often appear thicker in US than in ARM. In order to minimize the seg-
mentation errors, center lines are extracted to form a skeleton passing through
the center of the vessels. A modified Dijkstra algorithm is then employed where
the Euclidian distance to the nearest wall is calculated for each voxel inside a
vessel. Using the inverse of this distance as weights, images are then converted
into a connected graph. Additional criteria are used to remove small branches
that may appear as a result of a noisy segmentation (see [8] for details).

3.1.3 Mechanical Coupling

Several representations are used to describe the pre-operative biomechanical
model. The brain is meshed and simulated with the Finite Element (FE)
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method, whereas constraints forces are applied on collision models (i.e. the
surface and the vessels). Displacements must therefore be transferred from the
FE mesh to the collision models, and conversely constraint forces must be in-
tegrated in FE equations. For this purpose, let J be a function providing the
position of each vertex of the collision meshes u

col
with respect to the nodal

positions of the tetrahedral mesh uFE :

u
col

= J (u
FE

) (1)

At the beginning of the simulation, the barycentric coordinates of each vertex
of the collision models are associated with their closest tetrahedral element
[30]. This association remains constant throughout the simulation, which can
mathematically be written as a Jacobian matrix, defined by J = ∂u

col
/∂uFE .

This Jacobian matrix is used to obtain the positions u
col

from the uFE positions.
The previous equation can be rewritten as follows:

u
col

= JuFE (2)

In the opposite, constraint forces λ
col

applied on the collision models are weighted
with the same barycentric coefficients and converted in equivalent nodal forces
on the finite element mesh λ

FE
:

λFE = JTλ
col

(3)

3.2 Intra-operative datasets

Intra-operatively, registration data are extracted from the navigated ultrasound
images. Power Doppler and B-mode signals are recorded simultaneously and the
corresponding 3D image volumes are reconstructed. In a clinical context, the set
of algorithms presented in the following paragraphs will have to be performed
during the surgical procedure. They must therefore be fast, a few seconds, and
almost fully automatic to allow their use in a clinical process.

3.2.1 Vascular tree from Power Doppler ultrasound images

Power Doppler ultrasound images provide a real-time visualization of flows,
particularly the blood flow, offering a strong contrast of the vessels (see Fig.
3a). The intra-operative vascular tree is then segmented from these images by
a thresholding method, using parameters tuned manually [31]. In addition, to
limit the sensitivity of the method with respect to segmentation parameters, the
skeletonization of the data is performed following the algorithm previously de-
scribed for the ARM. Finally, in order to maintain computation time compatible
with clinical constraints and to avoid over-constrained problems, the vascular
tree model is sampled with 1 point every 2.5 mm (this value could adapted to
the mesh resolution).
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(a) Doppler Image (b) B mode image (c) Point cloud generation

Figure 3: Extraction of the probe footprint in US B mode images.

3.2.2 Probe footprint from B-mode ultrasound images

The ultrasound probe footprint located at the interface between the probe and
brain tissues is easily identifiable, and can thus be extracted from B mode
images in order to provide additional constraints at the surface of the brain.
The visualization of this boundary arises from an ultrasound artifact: when the
waves enter the tissues of the brain, a part is reflected on the surface forming
this specific band in the image (see Figure 3b). The footprint being located
on the edges of the images, the outer envelope of the volume is extracted. A
low-pass filter is then applied to provide a binary volume, and finally a point
cloud is generated sampling data at 1 point every 10 mm (see Fig. 3c).

3.3 Biomechanical model: formulation

In the context of registration with intra-operative data, a static problem can be
considered. The governing equation is given by:

F(u
FE

) +H(u
col
,pI)λ = 0 (4)

where F(u
FE

) is a nonlinear function describing the internal forces according
to the displacement uFE of the FE model. H(u

col
,pI) is a nonlinear function

associating Lagrangian Multipliers λ used to impose constraint forces to the FE
model. The number and directions of Lagrangian Multipliers depend on the
collision models positions, u

col
, and the positions extracted from intra-operative

images, pI . In addition, the solution u
FE

to this problem must satisfy a set of
constraints equations which can mathematically be represented as follows:

H(u
col
,pI) = δ (5)

where δ is the violation of the constraints (for example penetration through a
boundary surface).

3.3.1 Constitutive law and parameters

As seen in Section 2.1.2, the constitutive behavior of the brain is known to
be complex and should be described using hyper-elastic laws. However, in our
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constraint-based context, displacements are imposed through Lagrangian Multi-
pliers. The solution in displacements is thus weakly sensitive to the constitutive
law and parameters [32, 12]. A linear elastic law is therefore used. Following
[33], the Young’s modulus and Poisson’s ratio are respectively set to E = 1.5
kPa and ν = 0.45. A higher stiffness of E = 10 kPa is used for the tumor.
To take into account large displacements while being computationally efficient,
simulations are run using the corotational approach [34].

3.3.2 Constraints

Two types of constraints are used during the registration process:

• Bilateral constraints (δ = 0) used to impose displacement such that
constrained points of the model are moved to a desired position.

• Unilateral constraints (δ ⊥ λ i.e. δ ≥ 0 and λ ≥ 0 and δ · λ = 0) are
used to impose contacts between structures. In other words, either the
violation is positive (δ ≥ 0) and no contact forces are applied (λ = 0)
or the violation must be nullified (δ = 0) with a positive constraint force
(λ ≥ 0).

Due to the non-linearity of H, a unique solution does not exist. Instead,
we use an iterative method where the problem is linearized at each iteration,
allowing for the convergence towards the closest local minimum. Constraint
equations are then defined at the beginning of each iteration using the current
position of the model, and are assumed to be constant during the solving process
H(u

col
,pI) ' ∂H/∂u = H. The constraint matrix H (known as the Jacobian

of the constraints) contains the directions on which Lagrangian Multipliers are
computed.

For each iteration i, a single iteration of a Newton-Raphson method is solved
while constraint equations are defined following an Iterative Closest Point (ICP)
algorithm [35]. Each point extracted from the intra-operative data is associated
with its closest element on the biomechanical model (see section 3.4), defining
this way the directions (stored in the matrix Hi) in which constraint forces λ
are applied to perform the registration. The linearized equation provides the
following Karush-Kuhn-Tucker (KKT) system:{

Ki∆ui + HiTλ = −F(ui)
Hi∆ui = δ

(6)

with Ki = ∂F/∂u is the global stiffness matrix and ∆ui = ui+1 − ui the
difference in position between two iterations.

3.3.3 Solving process

The systems are solved with a schür complement method. This requires the

computation of the Delassus operator W = HiKi−1HiT which is the most
time-consuming operation. In our context, a large number of constraints needs
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to be applied on the FE model (Hi is a sparse matrix whose dimension is the
number of constraints times the number of degrees of freedom of the FE model).

Moreover, even for a relatively coarse FE mesh, computing the inverse of Ki−1

at each simulation step would be too expensive, preventing an intra-operative
use of the method. Instead we used the Compliance warping method introduces
by [36] where the Delassus operator is approximated using the stiffness matrix

inverted at the initial step and nodal rotations: W = HiRiK0−1

RiTHiT ,
where Ri is the current nodal rotation derived from the corotational formulation
[34].

Finally a modified Gauss-Seidel solver provides λ satisfying the KKT con-
ditions (see [37] for details). At equilibrium, i.e. ∆uFE = 0, the displacement
field of the FE model is used to warp the pre-operative MRI image.

3.4 Constraint-based iterative registration

Let M be the pre-operative model, P be the collision models (obtained with
the barycentric mapping J) and I the intra-operative data. Three types of
constraints are used to match M to I:

Boundary conditions: Bilateral constraints are applied between the external
surface of the brain model M and Pdura. Tissue is then prevented from
exiting the skull cavity, and can slide in contact with the dura mater.
These constraints are removed in the craniotomy area, identified in the
ultrasound B-mode images, so that tissues can sag. Finally, a few nodes
are fixed in the cerebellum area.

Cortical surface: Unilateral constraints force M to remain under the US
probe footprint Iprobe. However, tissue can sag and are not necessarily
in contact.

Vessels registration: The pre- and intra-operative vascular trees Pvessels and
Ivessels are registered using bilateral constraints.

All these constraints are integrated and solved with the same formalism,
described in equation (6). At the end of each simulation step, a λ force is com-
puted allowing to impose displacements on the model satisfying the constraints.
Yet, a major difficulty of this constraint-based lies in the uncertainty during
the pairings step. Indeed, although pre- and intra-operative data represent the
same anatomical structures, their characteristics and quality may differ greatly
due to noisy data and calibration errors, inherent in clinical applications. For
this reason, we introduce the notion of sliding constraints. We voluntary un-
der sample the constraints, allowing this way to partially solve the registration
problem while letting the mechanical model deform and refine pairing of data
over the iterations. The overall iterative process is depicted in Figure 4 and in
algorithm 1.
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Figure 4: iterative registration process. Pairings between pre- and intra-
operative datasets P and I are computed, then filtered. This defines the direc-
tions of the Lagrangian Multipliers constraints, stored in matrix H, applied to
the biomechanical model M so that it deforms towards I.

Algorithm 1 Constraint-based iterative registration

repeat
1. Compute pairings between P and I
2. Filter these pairings
3. Build the constraint matrix H (Lagrangian Multipliers) for M
4. Solve a single Newton-Raphson iteration of the static problem

until Equilibrium is reached.
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3.4.1 Computing pairings

The first step of each iteration consists of computing a set of pairings between P
and I, defining the distances to minimize. Depending on the structures and their
representation, point-to-surface, point-to-segment or point-to-point projections
can be used.

In a typical scenario the pre-operative dataset P is the best defined, using
continuous curves or surfaces, while I can simply be a set of points. Just like in
a standard Iterative Closest Point method (ICP), each point qI of I is paired
with its closest projection qP on P. Several directions nj are associated:

• when projecting on a plane, n1 is the plane’s normal on qP .

• when projecting on a line, n1 is the direction of projection and n2 is
orthogonal to both n1 and the line’s tangent (see Figure 5).

• when projecting on a point, n1, n2 and n3 form an orthonormal referential
centered on qP .

While the pairing is usually identified from I to P, the associated constraints
are applied on M, along directions nj , so that it deforms towards I.

3.4.2 Filtering pairings

A crucial step is to filter the pairings to remove aberrant ones. The main
strategies are the following:

• when several vertices of I are projected on the same line segment or tri-
angle, only the nearest one is kept [8].

• when a pair’s distance is larger than the median distances plus a given
threshold, or smaller than another threshold, this pair discarded [38, 8].

• when available, second degree information can also be taken into account
in addition to Euclidian distances. For example, elements with a different
orientation cannot be paired [37].

After this filtering, remaining pairings may also be subsample. First, this
can limit the total number of constraints eventually applied on M, to spare
computation time. Also, it is important to avoid having multiple constraints,
potentially antagonists, on single or neighbor FE elements. Therefore, pairings
initially defined between P and I must be later sampled with respect to theM
mesh refinement.

3.4.3 Sliding Constraints

While filtering allows to prune inconsistent pairings that may arise from noisy
data, this criterion is not sufficient. Indeed, due to the deformation between
pre- and intra-operative images some positions of I may have shifted to closer
structures in the pre-operative model. However, this may not be the actual
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corresponding position of the point on the vessel, which remains unknown. For
example, a point may be projected on a given vessel, but its position on this
vessel is not exactly known. It is therefore important to not completely constrain
the model and impose displacements in this direction; otherwise a point would
always, at the end of the simulation, remain on its initial projection.

A main advantage of our method is the notion of sliding constraints. When
a constraint is applied along a direction ni, forces λ are only computed so that
no violation of the constraint remains along that direction. However, the initial
point can end up anywhere on the plane orthogonal to ni, not necessarily on
its initial projection. Note that bounding λ forces may break that condition, in
case of very large (mis)pairing distances. The shift in the orthogonal direction
is given by the constraint solver minimizing the energy necessary to satisfy the
set of constraints.

Depending on the type of elements the sliding constraints are defined along
the following directions:

• a projection on a plane yields to a single constraint along direction n1.
The point can slide along this plane: after resolution, it will be located on
the plane, but not necessarily on its initial projection.

• a projection on a line segment yields two constraints along n1 and n2. The
point can slide along this line: after resolution, it will be located on the
line, but not necessarily on its initial projection.

An example of sliding constraint is given in Figure 5. For an iteration k of
the registration method, each point can slide along its segment of projections.
Its final position depends on all other constraints applied to the model. The
next iteration(s) will then enable the convergence towards a local solution.

Figure 5: sliding constraints

Advantages of using the sliding constraints in an iterative registration pro-
cess are then:

• no a priori information is required during the pairing step. Closest pro-
jections only are used, plus the filtering step.
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• in the case of mispairings, for example projection of a point onto the
wrong vessel, the considered point will end up far from its initial target
projection, if other better-suited constraints force the model into another
direction.

• in the case of antagonist constraints, none or few of them should be re-
solved, and a new iteration will occur.

• at each new iteration k, pairings will be redefined. The expected behavior
is that the uncertainty of the pairings will decrease as long as the process
converges towards an overall acceptable solution.

3.5 Clinical evaluation

As presented in [8], our method has been evaluated on five retrospective cases.
Data were collected by the SINTEF Medical Technology Institute at St. Olav
University Hospital (Trondheim, Norway) [38]. For each clinical case, T2-
FLAIR and Angiographic MRI images were acquired before surgery. During
the procedure, ultrasound images were acquired with the navigation system
Sonowand [39]. These data were collected through a clinical study approved by
the local ethics committees and the consent of each patient was obtained prior
to the procedure.

3.5.1 Quantitative and qualitative results after dural opening

Our method has been evaluated and compared to the modified ICP (providing
a rigid registration) of [31, 40, 38], available in the open-source framework for
image-guided therapy CustusX [41]. To obtain quantitative results, the first
difficulty was to define reliable landmarks visible in both image modalities. For
each case, 5 to 9 landmarks were first identified in blood vessels bifurcations,
by two operators, on both the pre-operative MRA and intra-operative Power
Doppler US images. These landmarks were used to define a target registration
error (except for one patient for which the quality of US was not enough to define
landmarks). In addition, anatomical structures such as sulcus were delineated
by a clinician in the MRI and B-mode US acquisitions, allowing a measurement
that is completely independent from the data used by the method. Note that the
measured errors, with vessel landmarks and sulci, are sub-surface and located
in the region of interest i.e. the tumor.

Figures 6a shows an example of simulation and 6b and 6c the corresponding
errors for 4 patients. On average 72% of the deformation occurring is corrected
with our method, with a mean error under 1.5 mm for each patient [8]. In
addition, less than 2 minutes are required to segment the intra-operative US
images, run the simulation and update the MR images, which is compatible
with a clinical use.

After registration, MRI is warped using the displacement field of the FE
model (see Fig. 7, right). Qualitative observations, especially deep around
the tumor, show consistent matching between the warped MRI and US images
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whereas significant errors can be observed in the initial pre-operative MRI,
enhancing the importance of the deformation.

3.5.2 Experiments during tumor resection

After considering craniotomy-induced brain-shift after dural opening, our method
has also been evaluated to compensate for deformations during resection [42].
For four of the five patients in the study, an intra-operative ultrasound scan was
also acquired during tumor resection. Note that the method was used as it is
on these images, without taking into account any topological modifications in
the model, nor using any continuity from the first ultrasound acquisition.

For the first 3 patients, the mean target registration error measured on vessel
landmarks is 1.76, 2.35 and 1.89 mm, respectively. Distances on sulci are also
globally improved, and qualitative results show a very satisfying adequation in
the deep tissue surrounding the tumor (see Figure 8). Overall, 63% of the shift
is compensated during resection, which is less than after dural opening but still
a very good improvement.

These promising results have not been confirmed on the fourth patient, with
a brain-shift reduced from 9 to 6.5 mm only. Two sources of error could explain
the failure of this case. First, vessels are located on one side of the tumor only,
which can explain the poor lateral accuracy. Mostly, this is a deep tumor while
the first 3 cases were superficial ones. The amount of deformation is here much

(a) Registration (b) Landmarks (c) Structures

Figure 6: Brain shift compensation using constraint-based simulation. Pre- and
intra-operative blood vessels, respectively in blue and orange, are registered.
Other constraints maintain the brain in sliding-contact with the dura matter and
under the US probe. The Hausdorff distance between landmarks and delineated
anatomical structures manually segmented are shown in graphs 6b and 6c.
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Figure 7: Example of pre-operative MRI, B-mode intra-operative US and MRI
updated with our method. A pointer first shows the borders of the exposed
cortical surface (top row) then a deep sulcus bifurcation point (bottom row).

larger and the retraction to create the surgical channel should clearly be taken
into account.

While more cases must be considered, these first results have shown the
ability of the method to compensate for resection-induced brain-shift, without
additional treatments, in the case of a peripheral tumor. While deformation
and topological changes occur locally within the tissues, reliable surrounding
vessels still remain to register the pre- and intra-operative exams. However,
more complex cases require additional treatment, especially the simulation of
tissue resection in the biomechanical model.

3.5.3 Practicability

Although validated in a retrospective study only, our method should be usable
in a clinical context. Indeed, it has been developed so that most of the steps,
especially the intra-operative ones, are performed with very limited interactions
of an operator and short computation times.

Pre-operative steps Segmentation of the pre-operative MRI remains one
of the main limitations for a widespread use of our method in clinic. Indeed,
while the whole brain is extracted via the automatic BET algorithm [9], the
segmentation of the tumor and the other anatomical structures remains man-
ual. Nevertheless, the segmentation of pre-operative images tends to become a
standard step of nowadays clinical routines. Morevoer, several solutions exist
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Figure 8: Brain-shift compensation during resection for patient 1 using the
constraint-based biomechanical method. Slices of the pre-operative MRI, B-
mode ultrasound image and updated MRI are shown. A pointer first shows the
borders of the exposed cortical surface (top row) then a deep sulcus bifurcation
point (bottom row).

in literature [23, 24, 25] for automatic extraction of the brain and its various
anatomical structures from MRIs.

Blood vessels

Soft tissues

0 4 8 12

Time (in minutes)

Meshing Compute boundary conditions Computation of K0−1

MIP segmentation Skeletonization

Figure 9: Execution time of the pre-operative steps (without taking into account
the time required for segmentation).

The generation of pre-operative models was performed in approximately 20
mn (after the segmentation of the brain). As shown in Figure 9, constructing
the soft tissue model includes mesh generation (FE and collision meshes), def-
inition of boundary conditions and inversion of the stiffness matrix (denoted

K0−1

). Given the segmentation of the structures, all these steps are performed
automatically. The most expensive part is the segmentation of the vessels in
the ARM image and their skeletonization, which takes about sixteen minutes.
Manual interactions are still needed, but as said before this is acceptable in the
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clinical workflow as these operations can be performed on the day before the
surgery.

Intra-operative steps A 11 L linear probe attached to the Vivid E9 ul-
trasound scanner (GE Vingmed Ultrasound, Horten, Norway) was used for all
acquisitions. The 3D reconstruction of images and the initial rigid transforma-
tion were performed intra-operatively with the CustusX framework, which was
successfully used in a clinical workflow [38]. The additional time of our method
is shown in Figure 10. Less than two minutes are required to provide updated
images intra-operatively (approximately 30 sec for the extraction of vessels and
the footprint, 1 to 2 mm for the simulation and 10 sec to warp the image).
In addition, the mode B and Doppler ultrasound images being acquired simul-
taneously, the extraction of the footprint of the probe and the vessels can be
performed in parallel.

Probe footprint

Blood vessels

0.0 0.5 1.0 1.5

Time (in minutes)

Extraction of blood vessels Extraction of probe footprint Simulation MRI update

Figure 10: Execution time of the intra-operative stages, after acquisition of the
ultrasound images and 3D reconstruction of the image volume.

Sixteen and two minutes are required for pre- and intra-operative steps,
respectively. Given the fact that brain surgery generally lasts several hours,
this overhead seems acceptable for a future use of our approach in the operative
theater.

4 Conclusion

A model-based method was proposed to register pre- and intra-operative medi-
cal images. It can be seen as an ICP-like approach with a biomechanical model
as the warping function, instead of a geometrical one, driven by Lagrangian
Multipliers constraints. The method was successfully evaluated on five retro-
spective clinical cases, yielding to an efficient compensation of the brain shift.
The method was also tested for resection-induced brain-shift compensation, and
provided a significant improvement of the registration. Future works will focus
on topological modifications of the FE model allowing for the simulation of the
separation of resected tissues. A clinical study is also in preparation to actu-
ally use our computational biomechanical model of the brain in the operating
theater.
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